|
. |
|
| ||
Williams |
Tome I | | Tome III | Tome IV |
Anatomy and physiology in the nineteenth century Animal chemistry |
Williams | Just at the time when the microscope was opening up the paths that were to lead to the wonderful cell theory, another novel line of interrogation of the living organism was being put forward by a different set of observers. Two great schools of physiological chemistry had arisen - one under guidance of Liebig and Wohler, in Germany, the other dominated by the great French master Jean Baptiste Dumas. Liebig had at one time contemplated the study of medicine, and Dumas had achieved distinction in connection with Prevost, at Geneva, in the field of pure physiology before he turned his attention especially to chemistry. Both these masters, therefore, and Wohler as well, found absorbing interest in those phases of chemistry that have to do with the functions of living tissues; and it was largely through their efforts and the labors of their followers that the prevalent idea that vital processes are dominated by unique laws was discarded and physiology was brought within the recognized province of the chemist. So at about the time when the microscope had taught that the cell is the really essential structure of the living organism, the chemists had come to understand that every function of the organism is really the expression of a chemical change - that each cell is, in short, a miniature chemical laboratory. And it was this combined point of view of anatomist and chemist, this union of hitherto dissociated forces, that made possible the inroads into the unexplored fields of physiology that were effected towards the middle of the nineteenth century. One of the first subjects reinvestigated and brought to proximal solution was the long-mooted question of the digestion of foods. Spallanzani and Hunter had shown in the previous century that digestion is in some sort a solution of foods; but little advance was made upon their work until 1824, when Prout detected the presence of hydrochloric acid in the gastric juice. A decade later Sprott and Boyd detected the existence of peculiar glands in the gastric mucous membrane; and Cagniard la Tour and Schwann independently discovered that the really active principle of the gastric juice is a substance which was named pepsin, and which was shown by Schwann to be active in the presence of hydrochloric acid. Almost coincidently, in 1836, it was discovered by Purkinje and Pappenheim that another organ than the stomach - namely, the pancreas - has a share in digestion, and in the course of the ensuing decade it came to be known, through the efforts of Eberle, Valentin, and Claude Bernard, that this organ is all-important in the digestion of starchy and fatty foods. It was found, too, that the liver and the intestinal glands have each an important share in the work of preparing foods for absorption, as also has the saliva - that, in short, a coalition of forces is necessary for the digestion of all ordinary foods taken into the stomach. And the chemists soon discovered that in each one of the essential digestive juices there is at least one substance having certain resemblances to pepsin, though acting on different kinds of food. The point of resemblance between all these essential digestive agents is that each has the remarkable property of acting on relatively enormous quantities of the substance which it can digest without itself being destroyed or apparently even altered. In virtue of this strange property, pepsin and the allied substances were spoken of as ferments, but more recently it is customary to distinguish them from such organized ferments as yeast by designating them enzymes. The isolation of these enzymes, and an appreciation of their mode of action, mark a long step towards the solution of the riddle of digestion, but it must be added that we are still quite in the dark as to the real ultimate nature of their strange activity. In a comprehensive view, the digestive organs, taken as a whole, are a gateway between the outside world and the more intimate cells of the organism. Another equally important gateway is furnished by the lungs, and here also there was much obscurity about the exact method of functioning at the time of the revival of physiological chemistry. That oxygen is consumed and carbonic acid given off during respiration the chemists of the age of Priestley and Lavoisier had indeed made clear, but the mistaken notion prevailed that it was in the lungs themselves that the important burning of fuel occurs, of which carbonic acid is a chief product. But now that attention had been called to the importance of the ultimate cell, this misconception could not long hold its ground, and as early as 1842 Liebig, in the course of his studies of animal heat, became convinced that it is not in the lungs, but in the ultimate tissues to which they are tributary, that the true consumption of fuel takes place. Liebig on animal heat. "The oxygen taken into the system is taken out again in the same forms, whether in summer or in winter; hence we expire more carbon in cold weather, and when the barometer is high, than we do in warm weather; and we must consume more or less carbon in our food in the same proportion; in Sweden more than in Sicily; and in our more temperate climate a full eighth more in winter than in summer. "Even when we consume equal weights of food in cold and warm countries, infinite wisdom has so arranged that the articles of food in different climates are most unequal in the proportion of carbon they contain. The fruits on which the natives of the South prefer to feed do not in the fresh state contain more than twelve per cent. of carbon, while the blubber and train-oil used by the inhabitants of the arctic regions contain from sixty-six to eighty per cent. of carbon. "It is no difficult matter, in warm climates, to study moderation in eating, and men can bear hunger for a long time under the equator; but cold and hunger united very soon exhaust the body. "The mutual action between the elements of the food and the oxygen conveyed by the circulation of the blood to every part of the body is the source of animal heat. "All living creatures whose existence depends on the absorption of oxygen possess within themselves a source of heat independent of surrounding objects. "This truth applies to all animals, and extends besides to the germination of seeds, to the flowering of plants, and to the maturation of fruits. It is only in those parts of the body to which arterial blood, and with it the oxygen absorbed in respiration, is conveyed that heat is produced. Hair, wool, or feathers do not possess an elevated temperature. This high temperature of the animal body, or, as it may be called, disengagement of heat, is uniformly and under all circumstances the result of the combination of combustible substance with oxygen. "In whatever way carbon may combine with oxygen, the act of combination cannot take place without the disengagement of heat. It is a matter of indifference whether the combination takes place rapidly or slowly, at a high or at a low temperature; the amount of heat liberated is a constant quantity. The carbon of the food, which is converted into carbonic acid within the body, must give out exactly as much heat as if it had been directly burned in the air or in oxygen gas; the only difference is that the amount of heat produced is diffused over unequal times. In oxygen the combustion is more rapid and the heat more intense; in air it is slower, the temperature is not so high, but it continues longer. "The most trustworthy observations prove that in all climates, in the temperate zones as well as at the equator or the poles, the temperature of the body in man, and of what are commonly called warm-blooded animals, is invariably the same; yet how different are the circumstances in which they live. "The animal body is a heated mass, which bears the same relation to surrounding objects as any other heated mass. It receives heat when the surrounding objects are hotter, it loses heat when they are colder than itself. We know that the rapidity of cooling increases with the difference between the heated body and that of the surrounding medium - that is, the colder the surrounding medium the shorter the time required for the cooling of the heated body. How unequal, then, must be the loss of heat of a man at Palermo, where the actual temperature is nearly equal to that of the body, and in the polar regions, where the external temperature is from 70 to 90 degrees lower. "Yet notwithstanding this extremely unequal loss of heat, experience has shown that the blood of an inhabitant of the arctic circle has a temperature as high as that of the native of the South, who lives in so different a medium. This fact, when its true significance is perceived, proves that the heat given off to the surrounding medium is restored within the body with great rapidity. This compensation takes place more rapidly in winter than in summer, at the pole than at the equator. "Now in different climates the quantity of oxygen introduced into the system of respiration, as has been already shown, varies according to the temperature of the external air; the quantity of inspired oxygen increases with the loss of heat by external cooling, and the quantity of carbon or hydrogen necessary to combine with this oxygen must be increased in like ratio. It is evident that the supply of heat lost by cooling is effected by the mutual action of the elements of the food and the inspired oxygen, which combine together. To make use of a familiar, but not on that account a less just illustration, the animal body acts, in this respect, as a furnace, which we supply with fuel. It signifies nothing what intermediate forms food may assume, what changes it may undergo in the body, the last change is uniformly the conversion of carbon into carbonic acid and of its hydrogen into water; the unassimilated nitrogen of the food, along with the unburned or unoxidized carbon, is expelled in the excretions. In order to keep up in a furnace a constant temperature, we must vary the supply of fuel according to the external temperature - that is, according to the supply of oxygen. "In the animal body the food is the fuel; with a proper supply of oxygen we obtain the heat given out during its oxidation or combustion."[3] |
|
. |
|
| ||||||||
|