.
-

A History of Science
Williams 
Tome I
Tome II
Tome III Tome IV

Book 3, chapter VIII
The conservation of energy
The final unification
Williams
There are only a few great generalizations as yet thought out in any single field of science. Naturally, then, after a great generalization has found definitive expression, there is a period of lull before another forward move. In the case of the doctrines of energy, the lull has lasted half a century. Throughout this period, it is true, a multitude of workers have been delving in the field, and to the casual observer it might seem as if their activity had been boundless, while the practical applications of their ideas - as exemplified, for example, in the telephone, phonograph, electric light, and so on - have been little less than revolutionary. Yet the most competent of living authorities, Lord Kelvin, could assert in 1895 that in fifty years he had learned nothing new regarding the nature of energy.

This, however, must not be interpreted as meaning that the world has stood still during these two generations. It means rather that the rank and file have been moving forward along the road the leaders had already travelled. Only a few men in the world had the range of thought regarding the new doctrine of energy that Lord Kelvin had at the middle of the century. The few leaders then saw clearly enough that if one form of energy is in reality merely an undulation or vibration among the particles of "ponderable" matter or of ether, all other manifestations of energy must be of the same nature. But the rank and file were not even within sight of this truth for a long time after they had partly grasped the meaning of the doctrine of conservation. When, late in the fifties, that marvellous young Scotchman, James Clerk-Maxwell, formulating in other words an idea of Faraday's, expressed his belief that electricity and magnetism are but manifestations of various conditions of stress and motion in the ethereal medium (electricity a displacement of strain, magnetism a whirl in the ether), the idea met with no immediate popularity. And even less cordial was the reception given the same thinker's theory, put forward in 1863, that the ethereal undulations producing the phenomenon we call light differ in no respect except in their wave-length from the pulsations of electro-magnetism.

At about the same time Helmholtz formulated a somewhat similar electro-magnetic theory of light; but even the weight of this combined authority could not give the doctrine vogue until very recently, when the experiments of Heinrich Hertz, the pupil of Helmholtz, have shown that a condition of electrical strain may be developed into a wave system by recurrent interruptions of the electric state in the generator, and that such waves travel through the ether with the rapidity of light. Since then the electro-magnetic theory of light has been enthusiastically referred to as the greatest generalization of the century; but the sober thinker must see that it is really only what Hertz himself called it - one pier beneath the great arch of conservation. It is an interesting detail of the architecture, but the part cannot equal the size of the whole.

More than that, this particular pier is as yet by no means a very firm one. It has, indeed, been demonstrated that waves of electro-magnetism pass through space with the speed of light, but as yet no one has developed electric waves even remotely approximating the shortness of the visual rays. The most that can positively be asserted, therefore, is that all the known forms of radiant energy-heat, light, electro-magnetism - travel through space at the same rate of speed, and consist of traverse vibrations - "lateral quivers," as Fresnel said of light - known to differ in length, and not positively known to differ otherwise. It has, indeed, been suggested that the newest form of radiant energy, the famous X-ray of Professor Roentgen's discovery, is a longitudinal vibration, but this is a mere surmise. Be that as it may, there is no one now to question that all forms of radiant energy, whatever their exact affinities, consist essentially of undulatory motions of one uniform medium.

A full century of experiment, calculation, and controversy has thus sufficed to correlate the "imponderable fluids" of our forebears, and reduce them all to manifestations of motion among particles of matter. At first glimpse that seems an enormous change of view. And yet, when closely considered, that change in thought is not so radical as the change in phrase might seem to imply. For the nineteenth-century physicist, in displacing the "imponderable fluids" of many kinds - one each for light, heat, electricity, magnetism - has been obliged to substitute for them one all-pervading fluid, whose various quivers, waves, ripples, whirls or strains produce the manifestations which in popular parlance are termed forms of force. This all-pervading fluid the physicist terms the ether, and he thinks of it as having no weight. In effect, then, the physicist has dispossessed the many imponderables in favor of a single imponderable - though the word imponderable has been banished from his vocabulary. In this view the ether - which, considered as a recognized scientific verity, is essentially a nineteenth- century discovery - is about the most interesting thing in the universe. Something more as to its properties, real or assumed, we shall have occasion to examine as we turn to the obverse side of physics, which demands our attention in the next chapter.


 

 

.


[Littérature][Textes][Bibliothèque]
[Aide][Recherche sur Internet]

© Serge Jodra, 2006. - Reproduction interdite.