Williams | The very next year after Dr. Wells's paper was published there appeared in France the third volume of the Memoires de Physique et de Chimie de la Societe d'Arcueil, and a new epoch in meteorology was inaugurated. The society in question was numerically an inconsequential band, listing only a dozen members; but every name was a famous one: Arago, Berard, Berthollet, Biot, Chaptal, De Candolle, Dulong, Gay-Lussac, Humboldt, Laplace, Poisson, and Thenard - rare spirits every one. Little danger that the memoirs of such a band would be relegated to the dusty shelves where most proceedings of societies belong - no milk-for-babes fare would be served to such a company. The particular paper which here interests us closes this third and last volume of memoirs. It is entitled "Des Lignes Isothermes et de la Distribution de la Chaleursurle Globe." The author is Alexander Humboldt. Needless to say, the topic is handled in a masterly manner. The distribution of heat on the surface of the globe, on the mountain-sides, in the interior of the earth; the causes that regulate such distribution; the climatic results - these are the topics discussed. But what gives epochal character to the paper is the introduction of those isothermal lines circling the earth in irregular course, joining together places having the same mean annual temperature, and thus laying the foundation for a science of comparative climatology. It is true the attempt to study climates comparatively was not new. Mairan had attempted it in those papers in which he developed his bizarre ideas as to central emanations of heat. Euler had brought his profound mathematical genius to bear on the topic, evolving the "extraordinary conclusion that under the equator at midnight the cold ought to be more rigorous than at the poles in winter." And in particular Richard Kirwan, the English chemist, had combined the mathematical and the empirical methods and calculated temperatures for all latitudes. But Humboldt differs from all these predecessors in that he grasps the idea that the basis of all such computations should be not theory, but fact. He drew his isothermal lines not where some occult calculation would locate them on an ideal globe, but where practical tests with the thermometer locate them on our globe as it is. London, for example, lies in the same latitude as the southern extremity of Hudson Bay; but the isotherm of London, as Humboldt outlines it, passes through Cincinnati. Of course such deviations of climatic conditions between places in the same latitude had long been known. As Humboldt himself observes, the earliest settlers of America were astonished to find themselves subjected to rigors of climate for which their European experience had not at all prepared them. Moreover, sagacious travellers, in particular Cook's companion on his second voyage, young George Forster, had noted as a general principle that the western borders of continents in temperate regions are always warmer than corresponding latitudes of their eastern borders; and of course the general truth of temperatures being milder in the vicinity of the sea than in the interior of continents had long been familiar. But Humboldt's isothermal lines for the first time gave tangibility to these ideas, and made practicable a truly scientific study of comparative climatology. In studying these lines, particularly as elaborated by further observations, it became clear that they are by no means haphazard in arrangement, but are dependent upon geographical conditions which in most cases are not difficult to determine. Humboldt himself pointed out very clearly the main causes that tend to produce deviations from the average - or, as Dove later on called it, the normal - temperature of any given latitude. For example, the mean annual temperature of a region (referring mainly to the northern hemisphere) is raised by the proximity of a western coast; by a divided configuration of the continent into peninsulas; by the existence of open seas to the north or of radiating continental surfaces to the south; by mountain ranges to shield from cold winds; by the infrequency of swamps to become congealed; by the absence of woods in a dry, sandy soil; and by the serenity of sky in the summer months and the vicinity of an ocean current bringing water which is of a higher temperature than that of the surrounding sea. Conditions opposite to these tend, of course, correspondingly to lower the temperature. In a word, Humboldt says the climatic distribution of heat depends on the relative distribution of land and sea, and on the "hypsometrical configuration of the continents"; and he urges that "great meteorological phenomena cannot be comprehended when considered independently of geognostic relations" - a truth which, like most other general principles, seems simple enough once it is pointed out. With that broad sweep of imagination which characterized him, Humboldt speaks of the atmosphere as the "aerial ocean, in the lower strata and on the shoals of which we live," and he studies the atmospheric phenomena always in relation to those of that other ocean of water. In each of these oceans there are vast permanent currents, flowing always in determinate directions, which enormously modify the climatic conditions of every zone. The ocean of air is a vast maelstrom, boiling up always under the influence of the sun's heat at the equator, and flowing as an upper current towards either pole, while an undercurrent from the poles, which becomes the trade-winds, flows towards the equator to supply its place. But the superheated equatorial air, becoming chilled, descends to the surface in temperate latitudes, and continues its poleward journey as the anti-trade-winds. The trade-winds are deflected towards the west, because in approaching the equator they constantly pass over surfaces of the earth having a greater and greater velocity of rotation, and so, as it were, tend to lag behind - an explanation which Hadley pointed out in 1735, but which was not accepted until Dalton independently worked it out and promulgated it in 1793. For the opposite reason, the anti-trades are deflected towards the east; hence it is that the western, borders of continents in temperate zones are bathed in moist sea-breezes, while their eastern borders lack this cold- dispelling influence. In the ocean of water the main currents run as more sharply circumscribed streams - veritable rivers in the sea. Of these the best known and most sharply circumscribed is the familiar Gulf Stream, which has its origin in an equatorial current, impelled westward by trade-winds, which is deflected northward in the main at Cape St. Roque, entering the Caribbean Sea and Gulf of Mexico, to emerge finally through the Strait of Florida, and journey off across the Atlantic to warm the shores of Europe. Such, at least, is the Gulf Stream as Humboldt understood it. Since his time, however, ocean currents in general, and this one in particular, have been the subject of no end of controversy, it being hotly disputed whether either causes or effects of the Gulf Stream are just what Humboldt, in common with others of his time, conceived them to be. About the middle of the century Lieutenant M. F. Maury, the distinguished American hydrographer and meteorologist, advocated a theory of gravitation as the chief cause of the currents, claiming that difference in density, due to difference in temperature and saltness, would sufficiently account for the oceanic circulation. This theory gained great popularity through the wide circulation of Maury's Physical Geography of the Sea, which is said to have passed through more editions than any other scientific book of the period; but it was ably and vigorously combated by Dr. James Croll, the Scottish geologist, in his Climate and Time, and latterly the old theory that ocean currents are due to the trade-winds has again come into favor. Indeed, very recently a model has been constructed, with the aid of which it is said to have been demonstrated that prevailing winds in the direction of the actual trade-winds would produce such a current as the Gulf Stream. Meantime, however, it is by no means sure that gravitation does not enter into the case to the extent of producing an insensible general oceanic circulation, independent of the Gulf Stream and similar marked currents, and similar in its larger outlines to the polar- equatorial circulation of the air. The idea of such oceanic circulation was first suggested in detail by Professor Lenz, of St. Petersburg, in 1845, but it was not generally recognized until Dr. Carpenter independently hit upon the idea more than twenty years later. The plausibility of the conception is obvious; yet the alleged fact of such circulation has been hotly disputed, and the question is still sub judice. But whether or not such general circulation of ocean water takes place, it is beyond dispute that the recognized currents carry an enormous quantity of heat from the tropics towards the poles. Dr. Croll, who has perhaps given more attention to the physics of the subject than almost any other person, computes that the Gulf Stream conveys to the North Atlantic one- fourth as much heat as that body receives directly from the sun, and he argues that were it not for the transportation of heat by this and similar Pacific currents, only a narrow tropical region of the globe would be warm enough for habitation by the existing faunas. Dr. Croll argues that a slight change in the relative values of northern and southern trade-winds (such as he believes has taken place at various periods in the past) would suffice to so alter the equatorial current which now feeds the Gulf Stream that its main bulk would be deflected southward instead of northward, by the angle of Cape St. Roque. Thus the Gulf Stream would be nipped in the bud, and, according to Dr. Croll's estimates, the results would be disastrous for the northern hemisphere. The anti-trades, which now are warmed by the Gulf Stream, would then blow as cold winds across the shores of western Europe, and in all probability a glacial epoch would supervene throughout the northern hemisphere. The same consequences, so far as Europe is concerned at least, would apparently ensue were the Isthmus of Panama to settle into the sea, allowing the Caribbean current to pass into the Pacific. But the geologist tells us that this isthmus rose at a comparatively recent geological period, though it is hinted that there had been some time previously a temporary land connection between the two continents. Are we to infer, then, that the two Americas in their unions and disunions have juggled with the climate of the other hemisphere? Apparently so, if the estimates made of the influence of the Gulf Stream be tenable. It is a far cry from Panama to Russia. Yet it seems within the possibilities that the meteorologist may learn from the geologist of Central America something that will enable him to explain to the paleontologist of Europe how it chanced that at one time the mammoth and rhinoceros roamed across northern Siberia, while at another time the reindeer and musk-ox browsed along the shores of the Mediterranean. Possibilities, I said, not probabilities. Yet even the faint glimmer of so alluring a possibility brings home to one with vividness the truth of Humboldt's perspicuous observation that meteorology can be properly comprehended only when studied in connection with the companion sciences. There are no isolated phenomena in nature. | |