|
. |
|
pour bien conduire sa raison et chercher la vérité dans les sciences |
||
René Descartes |
Présentation | Ire partie | IIe partie | IIIe partie | IVe partie | Ve partie | VIe partie |
Le Discours
de la Méthode est un ouvrage de Descartes
(1637). Par une innovation audacieuse écrit en français,
il servait d'introduction à la Géométrie,
la Dioptrique, les Météores. C'est celui des ouvrages de Descartes
qui a le plus influé sur les destinées de la philosophie. Ce discours
présente une profondeur de vue et une simplicité de style
que l'on aime à trouver réunies. L'auteur y fait, avec une naïve candeur,
l'histoire de ses réflexions, de son doute, de ses essais et de leurs
résultats; il montre comment il est arrivé à sentir le besoin d'une
méthode qui lui soit propre, puis à eu poser les règles, enfin à trouver
par son aide le point fixe et incontestable sur lequel il voulait établir
la philosophie.
Tous les humains, pour Descartes, possèdent une faculté égale de discerner le vrai du faux; si les sciences, telles qu'elles existent à l'époque de Descartes, ne lui donnent aucune connaissance claire et assurée, cela tient à ce qu'elles ne partent pas de principes solidement établis et n'ont pas de méthode. Descartes va essayer de reconstruire par sa seule raison l'édifice de la science en rejetant toutes les opinions qu'il avait acceptées jusqu'alors, sauf en ce qui concerne la politique et la religion. Il résume d'abord, en quatre préceptes, la méthode qu'il emploiera et qui comprend ce qui il y a de meilleur dans la logique, l'analyse et l'algèbre : 1° ne recevoir aucune chose pour vraie qu'elle ne soit connue évidemment être telle;Cette méthode établie, quelques règles d'une morale provisoire formulée, Descartes commence par douter de tout. Une proposition, cependant, s'impose nécessairement à son esprit : Je pense, donc je suis. Elle sera le principe fondamental de la métaphysique cartésienne. L'existence de l'âme distincte du corps, le critérium de la vérité, la preuve, de l'existence de Dieu, la détermination des attributs divins, l'existence du monde extérieur garantie par la véracité divine, voilà les principales conséquences du "Je pense, donc je suis". Le monde extérieur n'est pas tel que nous le montrent nos sens, mais tel que notre entendement le conçoit. Des perfections de Dieu se déduisent les lois générales du mouvement; ces lois, agissant sur la matière, produisent l'univers, les corps inanimés, les végétaux, les animaux, dont l'activité est toute mécanique, et aussi le corps de l'humain. L'âme, qui pense seule, n'est pas réductible à de l'étendue et du mouvement. Le Discours de la méthode, par
la clarté et la rigueur de son style, est
un monument considérable de la langue française
: mais, surtout, il a été le point de départ de la philosophie
moderne : il a marqué la libre initiative de la raison humaine, en
matière métaphysique. (NLI).
Frontispice le 1re édition du Discours de la Méthode. Pour comprendre
le Discours de la méthode.
Vers 1629, peu de temps après son arrivée en Hollande, Descartes avait commencé la composition d'un grand ouvrage qui devait être l'exposition complète de son système. Troublé par la nouvelle de la condamnation de Galilée, il s'était brusquement arrêté dans son travail. Rien ne put le décider à reprendre sa tâche; mais, pour donner satisfaction à ses amis, il entreprit la composition de l'ouvrage qui nous occupe ici. Son objet fut à la fois très net et très simple : donner de son système un aperçu rapide; exposer en détail sa méthode; prouver par des exemples indiscutables la puissance extraordinaire de ses procédés d'investigation Le livre dut être composé de quatre parties : le Discours de la méthode; la Dioptrique; les Météores et la Géométrie. Le Discours de la méthode eut pour objet d'exposer la partie philosophique de l'ouvrage; les trois autres traités renferment les applications de la méthode. On peut dire, sans rien exagérer, que jamais livre plus extraordinaire ne sortit des mains d'un homme. La Dioptrique expose la loi de la réfraction de la lumière, connue encore aujourd'hui sous le nom de loi de Descartes; l'explication des principaux phénomènes que présente la marche de la lumière à travers des verres de différentes formes, et, par exemple, dans les lunettes d'approche; enfin la première théorie scientifique de la vision. Les Météores renferment la première explication de l'arc-en-ciel double. On n'y rencontre pas, il est vrai, la découverte de la décomposition de !a lumière par le prisme; mais cette invention, qui était réservée à Newton, est admirablement préparée. La Géométrie est plus étonnante encore. Elle contient une réforme complète de l'algèbre, le moyen de résoudre les équations du troisième et du quatrième degré; elle indique des méthodes absolument nouvelles, d'une fécondité incomparable, comme la méthode des coefficients indéterminés et celle qui est connue aujourd'hui sous le nom de Règle des signes de Descartes. Enfin elle contient l'exposition de toute une science absolument nouvelle, l'application de l'algèbre à l'étude des propriétés des lignes courbes : cette science est poussée si loin, qu'elle enseigne le moyen de trouver en général les tangentes à une courbe quelconque définie par son équation. Quand on songe que toutes ces découvertes apparaissent à la fois dans un livre écrit avec une aisance et une clarté merveilleuses, on s'explique l'admiration des contemporains, et l'on conçoit que les témoignages qu'ils ont donnés de cette admiration ne doivent pas sembler excessifs. On conçoit aussi comment une méthode capable de donner de tels résultats dut s'imposer tout d'abord avec une autorité en quelque sorte absolue. Pour donner de la façon la plus simple une idée de ce qu'est cette méthode, nous nous servirons pour cela non seulement du Discours de la méthode, mais des Règles pour la direction de l'esprit, qui sont un commentaire naturel du Discours. La méthode que nous étudions est générale, c'est-à -dire qu'elle s'applique à toutes les questions, quelles qu'elles soient. Elle est de plus tellement compréhensive que tous les procédés d'investigation antérieurement connus, l'analyse des anciens, l'algèbre et la logique' scolastique, n'en sont que des applications particulières. Pour la bien comprendre, il est nécessaire de parcourir toute la suite d'idées qui a conduit Descartes lui-même à la concevoir. Trouver la solution d'un problème d'arithmétique,
c'est trouver par des opérations arithmétiques un ou plusieurs nombres
qui satisfont aux conditions indiquées dans l'énoncé de la question.
Par exemple, si l'on demande de trouver deux nombres dont la somme soit
égale à 30 et la différence égale à 20, la solution du problème consiste
à indiquer les opérations arithmétiques qu'il faut exécuter sur les
deux nombres donnés, 20 et 30, pour trouver les deux nombres
demandés, 25 et 5, qui satisfont à l'énoncé de la question.
Pour fixer les idées et simplifier le langage, on désigne tes nombres donnés par des lettres telles que a et b, les nombres cherchés par des lettres telles que x et y. Si l'on traite de cette manière le problème que nous venons d'indiquer, on trouve pour solution les deux formules que voici : x=(a+b)/2 et y = (a-b)/2 L'arithmétique, ainsi généralisée n'est autre chose que l'algèbre. La grande découverte mathématique de Descartes est d'avoir reconnu qu'à toute opération arithmétique correspond une opération géométrique. Ainsi, partager un nombre quelconque a en deux parties égales, c'est effectuer sur les deux nombres a et 2 l'opération arithmétique bien connue de tout le monde sous le nom de division : partager une droite a en deux parties égales, c'est faire sur la ligne a des opérations géométriques enseignées dans tous les traités élémentaires. Tout symbole algébrique, tel que a/2 a donc une double signification. Il désigne à la fois une opération arithmétique et une opération géométrique. Ces deux opérations sont distinctes, mais elles se correspondent elles reviennent en quelque sorte l'une à l'autre; car toute quantité arithmétique peut être considérée comme la représentation d'une quantité géométrique, et réciproquement toute opération arithmétique peut être considérée comme la représentation d'une opération géométrique. Ces considérations ont conduit Descartes
à concevoir une algèbre infiniment plus générale que l'algèbre vulgaire.
Cette algèbre nouvelle n'est autre chose qu'un art de combiner suivant
des règles fixes des symboles, qui ont tous une double signification arithmétique
et géométrique. Et maintenant, comme la science de la nature a pour principal
objet de découvrir et d'exprimer les relations
mathématiques qui existent entre une infinité de grandeurs, telles que
des temps, des forces, des vitesses, etc., on conçoit sans peine que l'algèbre,
telle que nous venons de la définir, puisse devenir une méthode
générale applicable aux mathématiques d'abord puis, sans exception Ã
toutes les sciences physiques. Cependant cette méthode, si générale
qu'elle soit, n'est pas encore universelle. On ne voit pas, en effet, comment
il serait possible de l'appliquer à d'autres objets que les quantités
ou grandeurs mathématiques. Donc Descartes a dû lui faire subir une transformation
nouvelle, pour lui donner un nouveau degré de généralité.
On a dit quelquefois que la méthode de Descartes était une méthode a priori. Ce n'est pas absolument exact. Sans doute, la méthode est a priori quand les éléments de la question peuvent être déterminés sans aucun appoel à l'expérience. C'est le cas de toutes les questions mathématiques. Mais dans les questions physiques, l'expérience seule peut déterminer les éléments de la question. Bien plus, dans les problèmes de ce genre, quand on a cru découvrir la combinaison d'éléments qui donne la solution de la question, l'expérience seule peut décider si la solution ainsi découverte est la solution véritable. Qu'il s'agisse, par exemple, d'expliquer comment se forme l'image d'un objet vu à travers une loupe. Il est évident qu'un des éléments principaux de la question est la modification que les rayons subissent dans leur direction en traversant le verre. Or l'expérience seule peut faire connaître le phénomène de la réfraction, et la loi de la réfraction est ici l'absolu de la question. Maintenant, quand on aura cherché parmi tous les effets de la réfraction celui qui paraît satisfaire à la question qu'on s'est posée, l'expérience seule pourra décider si la combinaison d'effets de la réfraction à laquelle on s'arrête est bien conforme à la réalité des choses. On voit que, dans la méthode cartésienne, la part faite à l'expérience paraît suffisante, et qu'aux yeux de la critique la plus sévère, cette méthode paraît ne rien laisser à désirer. L'influence qu'elle a eue dès l'origine et qu'elle exerce encore aujourd'hui est vraiment extraordinaire; et cette influence est sensible non seulement dans la philosophie et dans les sciences positives, mais dans les lettres mêmes. Toutefois il ne faut rien exagérer, et le dernier point que nous venons d'indiquer demande une explication précise. Des historiens d'une grande autorité ont cru pouvoir affirmer que le Discours de la méthode a été pour la prose française ce qu'a été le Cid pour la poésie. C'est une exagération. Le livre qui a vraiment transformé la prose française au XVIIe siècle, ce n'est pas le Discours de la méthode, ce sont les Provinciales. Pour nous, nous acceptons pleinement le jugement de Sainte-Beuve dans Port-Royal : " Le succès littéraire et mondain que n'avait pas eu Descartes, c'est Malebranche qui l'a eu. Car il ne l'a pas eu, et ce n'est que par une fiction rétrospective, par une pure construction de leur esprit que d'habiles critiques de nos jours lui ont prêté une réputation autre que philosophique, et ont fait du Discours de la méthode une des époques de notre langue. Jamais Descartes, de son vivant, n'a eu d'influence comme écrivain. Ce n'est qu'un témoin de la langue de son temps. Il la parlait bien et l'écrivait naturellement, mais ou ne peut dire qu'il l'ait fait avancer : réservons cet honneur entier à Pascal".Cependant, l'influence que n'a pas eue le Discours de la méthode, la philosophie cartésienne a pu l'avoir. Fontenelle a fort bien dit dans sa petite Digression sur les anciens et les modernes : "Ce qu'il y a de principal dans la philosophie et ce qui de là se répand sur tout, je veux dire la manière de raisonner, s'est extrêmement perfectionné dans ce siècle. Avant M. Descartes on raisonnait plus commodément; les siècles passés sont bien heureux de n'avoir pas eu cet homme-là . C'est lui, à ce qu'il me semble, qui a amené cette nouvelle manière de raisonner, beaucoup plus estimable que sa philosophie même, dont une bonne partie se trouve fausse ou incertaine, suivant les propres règles qu'il nous a apprises. "Sainte-Beuve, qui cite ces paroles de Fontenelle, ajoute : " Descartes a contribué plus que personne à faire de l'esprit, humain un instrument de précision, et cela mène loin".Nous pouvons terminer sur ce mot, absolument vrai en tous sens, une introduction destinée à faire sentir l'importance du Discours de la méthode, et à fournir les con. naissances nécessaires pour le bien entendre. (T.V. Charpentier). Une analyse du
texte.
" Si ce discours semble trop long pour être lu en une fois, on le pourra distinguer en six partiesPremière partie. Les considérations touchant les sciences annoncées pour la première partie, se résument dans ce qu'il dit de la philosophie : " Voyant qu'elle a été cultivée par les plus excellents esprits qui aient vécu depuis plusieurs siècles, et que néanmoins il ne s'y trouve encore aucune chose dont on ne dispute, et par conséquent qui ne soit douteuse, je n'avais point assez de présomption pour espérer d'y rencontrer mieux que les autres; et que, considérant combien il peut y avoir de diverses opinions touchant une même matière, qui soient soutenues par des gens doctes, sans qu'il y en puisse avoir jamais plus d'une seule qui soit vraie, je réputais presque pour faux tout ce qui n'était que vraisemblable. Puis, pour les autres sciences, d'autant qu'elles empruntent leurs principes de la philosophie, je jugeais qu'on ne pouvait avoir rien bâti qui fût solide sur des fondements si peu fermes."Il raconte ensuite comment, pressé par un extrême désir d'apprendre à distinguer le vrai du faux, il résolut de ne chercher d'autre science que celle qui pourrait se trouver eu lui-même, ou dans le grand livre du monde, et employa le reste de sa jeunesse à voyager, à voir des cours et des armées, à fréquenter des gens de diverses humeurs et conditions, à recueillir diverses expériences et à refléchir sur tout ce qu'il voyait, et enfin comment il prit un jour la résolution d'étudier en lui-même et d'employer toutes les forces de son esprit à choisir les chemins qu'il devait suivre. Deuxième
partie.
" Ainsi, conclut-il, au lieu de ce grand nombre de préceptes dont la logique est composée, je crus que j'aurais assez des quatre suivants, pourvu que je prisse lire ferme et constante résolution de ne manquer pas une seule fois à les observer :Telles sont les quatre règles dans lesquelles Descartes résume une méthode qui, bien considérée, n'est encore qu'une application du procédé de la méthode naturelle. Et ce qui le satisfait en cette méthode, c'est que par elle, il est assuré d'user de sa raison, sinon parfaitement, au moins le mieux qu'il soit en son pouvoir. Cependant, il pense qu'en faisant usage de ce moyen pour refaire ses opinions, il ne pont espérer d'en venir à bout avant d'avoir atteint un âge bien plus mûr que celui de vingt-trois ans, qu'il avait quand il a fait ces réflexions. Troisième
partie.
« La première était d'obéir aux lois et aux coutumes de mon pays, retenant constamment la religion en laquelle Dieu m'a fait la grâce d'être instruit dès mon enfance, et me gouvernant en toute autre chose suivant les opinions les plus modérées et les plus éloignées de l'excès, qui fussent communément reçues en pratique par les mieux sensés de ceux avec qui j'aurais à vivre.Enfin, juge qu'il ne peut mieux faire que d'employer toute sa vie à cultiver sa raison et à s'avancer dans la connaissance de la vérité, en suivant la méthode qu'il s'est prescrite. Neuf ans s'écoutèrent dans la pratique de ces maximes, avant qu'il entreprît de toucher aux difficultés de la science et de la philosophie, et neuf autres encore avant qu'il composât et publiât ce discours. Quatrième
partie.
"Désirant vaquer uniquement à la recherche de la vérité, je pensai, dit-il, qu'il fallait que je rejetasse comme absolument faux tout ce en quoi je pourrais imaginer le moindre doute, afin de voir s'il ne resterait point après cela, en ma croyance, quelque chose qui fût entièrement indubitable. Ainsi, à cause que nos sens nous trompent quelquefois, je voulus supposer qu'il n'y avait aucune chose qui fût telle qu'ils nous la font imaginer; et parce qu'il y a des hommes qui se méprennent en raisonnant, même touchant les plus simples matières de géométrie, et y font ales paralogismes, jugeant que j'étais sujet à faillir autant qu'aucun autre, je rejetai comme fausses toutes les raisons que j'avais prises auparavant pour démonstrations; et enfin, considérant que toutes les mêmes pensées que nous avons, éveillés, nous peuvent aussi venir quand nous dormons, sans qu'il y en ait aucune pour lors qui soit vraie, je me résolus de feindre que toutes les choses qui m'étaient jamais entrées en l'esprit, n'étaient non plus vraies que les illusions de mes songes. Mais aussitôt je pris garde que, pendant que je voulais ainsi penser que tout était faux, il fallait nécessairement que moi qui le pensais, je fusse quelque chose; et remarquant que cette vérité : je pense, donc je suis, était si ferme et si assurée, que toutes les plus extravagantes suppositions des sceptiques n'étaient pas capables de l'ébranler, je jugeai que je pouvais la recevoir sans scrupule pour le premier principe de la philosophie que je cherchais."-
Voyant ensuite qu'il pouvait feindre qu'il
n'avait pas de corps et que le monde n'existait pas, il n'est donc encore
entièrement assuré que de l'existence de son moi,
de son âme, bien distincte du corps, plus aisée à connaître que loi,
et qui sans lui ne laisserait pas d'être ce qu'elle est. Mais, dans sa
pensée, il trouve l'idée de l'infini,
du parfait qu'il ne peut tenir ni de lui-même, vu qu'il se conçoit comme
fini, ni encore bien moins du néant, et il en conclut l'existence nécessaire
d'un Etre parfait de qui seul elle peut lui venir. Le voilà donc encore
tout aussi assuré de l'existence de Dieu
que de la sienne propre. De plus, puisque Dieu est parfait, il ne saurait
être trompeur, et puisque tout ce qui en nous vient de lui, les facultés
par lesquelles nous percevons les corps sont véridiques, et les notions
claires que nous en avons ne peuvent être que vraies. C'est ainsi qu'allant
du moi à Dieu, et de Dieu au monde, il rétablit sur une base inébranlable
l'édifice de la connaissance qu'il semblait
d'abord avoir anéanti par son doute.
Sixième
partie.
Conclusion.
Des applications qu'on en fit plus tard aux faits qui constituent la pensée, sortira la psychologie, et cependant, cette méthode, il faut l'avouer, n'est encore qu'imparfaitement psychologique. Descartes s'est borné à indiquer le point de départ de cette science, puis s'élevant aussitôt jusqu'à Dieu, il s'élance dans l'ontologie. Il ne fait qu'un pas sur la route qu'il trace, et il l'abandonne à l'instant, pour revenir à la méthode rationnelle. Il semble qu'il n'ait voulu que chercher une base à son raisonnement : à peine a-t-il trouvé dans la pensée ce point fixe et inébranlable, qu'il retourne à l'emploi des anciens procédés. Aussi n'existe-t-il de lui dans la philosophie que ce point de départ, et l'impulsion qu'il a donnée à l'esprit humain. La prétendue démonstration de l'existence de Dieu par l'idée de l'infini, remonte à saint Anselme, et peut-être plus haut; la théorie des idées qui régnait encore, laisse penser à Descarles que plusieurs sont innées. De pIus, en faisant de la conscience la seule faculté légitime et la plus puissante de fonctions intellectuelles, il étend sur toutes le caractère subjectif qui lui appartient, et prépare ainsi le scepticisme de Berkeley et l'idéalisme subjectif de Kant. D'un autre côté, tout préoccupé du fait de la connaissance, il ne voit que lui dans la pensée, et sans nier l'activité volontaire, il ne dégage pas. De là , l'oubli de la personnalité individuelle et la tendance à un idéalisme panthéiste, que réalisera Spinoza. Telles sont, en effert, les deux directions que suit le Cartésianisme. (DPC, L.-F. Jéhan). |
. |
|
|
|||||||||||||||||||||||||||||||
|